배너 닫기

AI활용 기후현상예측 비약적 향상

“향후 기후예측에의 도입이 더욱 가속화 될 것

등록일 2021년10월14일 14시01분 URL복사 기사스크랩 프린트하기 이메일문의 쪽지신고하기
기사글축소 기사글확대 트위터로 보내기싸이월드 공감 네이버 밴드 공유


 

[한국기술뉴스] 전남대학교 공동연구팀이 딥러닝 기법을 통해 다양한 기후현상의 예측 성능을 비약적으로 향상시킬 수 있음을 확인해 주목되고 있다.

 

전남대 지구환경과학부 함유근 교수와 주용식 박사과정 연구팀은 미국 뉴욕주립대 김혜미 교수(제1저자), 서울대 손석우 교수 연구팀과의 공동연구에서, 인공지능을 활용해 기존 기후예측모형의 열대 계절내 진동현상 예측 성능을 비약적으로 향상시킬 수 있음을 확인했다.

 

연구팀은 딥러닝 기법 중 장단기 메모리(Long Short-Term Memory)기법을 응용해 기존 기후예측모형의 오차를 감쇄시키는 시스템을 개발하였다. 이 기법을 적용한 결과, 기존 기후예측 모형의 예측 오차를 최대 90%까지 감소시키고, 열대대류현상의 발생위치 및 강도를 예측 시작 4주 이후까지 예측하는데 성공했다.

 

이는 기존 기후예측시스템에 내재된 계통적 예측 오차의 패턴 및 강도를 딥러닝 시스템이 성공적으로 학습, 감쇄시킬 수 있음을 보인 것이다.

 

열대 계절내 진동은 열대지역 기후뿐만 아니라 한반도를 포함한 동아시아 지역의 여름철 폭염과 겨울철 한파 발생에 영향을 미치는 것으로 알려져 있다.

 

함유근 교수는 “이번 연구를 통해 다양한 기후현상에 딥러닝 기법이 성공적으로 적용될 수 있음을 보인 것에 큰 의미가 있다.”며, “향후 기후예측에의 도입이 더욱 가속화 될 것”이라고 밝혔다.


 

나소영 기자 이기자의 다른뉴스
올려 0 내려 0
유료기사 결제하기 무통장 입금자명 입금예정일자
입금할 금액은 입니다. (입금하실 입금자명 + 입금예정일자를 입력하세요)
관련뉴스 - 관련뉴스가 없습니다.

가장 많이 본 뉴스

특허 기술이전 기술사업 연구성과

포토뉴스 더보기

핫이슈 더보기

현재접속자 (명)